Methylation Status of miR-200b Promoter in Colorectal Polyp and Adenocarcinoma Tissues

IRCMJ logo
PDF
HTML

Keywords

Biomarkers
Colorectal cancer
Epigenetics
Methylation
MicroRNA200b
Polyps

How to Cite

SavabkarS., IraniS., AlebouyehM., MirfakhraieR., Nazemalhosseini MojaradE., ZaliM. reza, & Asadzadeh aghdaeiH. (2021). Methylation Status of miR-200b Promoter in Colorectal Polyp and Adenocarcinoma Tissues. Iranian Red Crescent Medical Journal, 23(4). https://doi.org/10.32592/ircmj.2021.23.4.80

Abstract

Background: Aberrant DNA methylation is a common molecular feature in colorectal cancer (CRC). Hypermethylation of miR-200b promoter, as an epigenetic factor, is involved in CRC tumorigenesis. The methylation status of miR-200b has been examined in CRC and adjacent normal tissues. 

Objectives: This study aimed to investigate miR-200b methylation in a series of colorectal adenomatous polyps, hyperplastic polyps, and adenocarcinoma tissues as precursors of CRC in the Iranian population for the first time.

Materials and Methods: In this cross-sectional study (2017-2018), the methylation status of the miR-200b promoter was investigated using methylation-specific PCR in 131 fresh samples, including 30 adenocarcinoma specimens, 17 tumor-adjacent normal tissues, 78 primary lesions (55 adenomatous polyps and 23 hyperplastic polyps) and 6 healthy individuals.

Results: Methylation of miR-200b was detected in adenocarcinoma samples (86%) and adenomatous polyps (85%); however, most of the hyperplastic polyps were unmethylated (69.6%). Neither control individuals nor tumor-adjacent normal tissues exhibited methylation in the miR-200b promoter. Aberrant methylation of miR-200b was significantly more common in tumor tissues and adenomatous polyps than in hyperplastic polyps (P<0.0001) and tumor-adjacent normal samples (P<0.0001).

Conclusion: Methylation status of the miR-200b promoter was significantly altered during CRC development and may be identified as an attractive biomarker for the early detection of the disease.

https://doi.org/10.32592/ircmj.2021.23.4.80
PDF
HTML

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10-29. doi: 10.3322/caac.20138. [PubMed: 22237781].
  2. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415-28. doi: 10.1038/nrg816. [PubMed: 12042769].
  3. Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-based therapies for colorectal cancer. Cells. 2020;9(6):1540. doi: 10.3390/cells9061540. [PubMed: 32599894].
  4. Nikolouzakis TK, Vassilopoulou L, Fragkiadaki P, Mariolis Sapsakos T, Papadakis GZ, Spandidos DA, et al. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients. Oncol Rep. 2018;39(6):2455-72. doi: 10.3892/or.2018.6330. [PubMed: 29565457].
  5. Gyparaki MT, Basdra EK, Papavassiliou AG. DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer. J Mol Med. 2013;91(11):1249-56. doi: 10.1007/s00109-013-1088-z. [PubMed: 24057814].
  6. Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020;12(524):eaax7533. doi: 10.1126/scitranslmed.aax7533. [PubMed: 31894106].
  7. Zheng D, Haddadin S, Wang Y, Gu LQ, Perry MC, Freter CE, et al. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 2011;4(6):575-86. [PubMed: 21904633].
  8. Zhu XL, Ren LF, Wang HP, Bai ZT, Zhang L, Meng WB, et al. Plasma microRNAs as potential new biomarkers for early detection of early gastric cancer. World J Gastroenterol. 2019;25(13):1580-91. doi: 10.3748/wjg.v25.i13.1580. [PubMed: 30983818].
  9. Zuo Z, Jiang Y, Zeng S, Li Y, Fan J, Guo Y, et al. The value of microRNAs as the novel biomarkers for colorectal cancer diagnosis: a meta-analysis. Pathol Res Pract. 2020;216(10):153130. doi: 10.1016/j.prp.2020.153130. [PubMed: 32853954].
  10. Yu C, Wan H, Shan R, Wen W, Li J, Luo D, et al. The prognostic value of the MiR-200 family in colorectal cancer: a meta-analysis with 1882 patients. J Cancer. 2019;10(17):4009-16. doi: 10.7150/jca.27529. [PubMed: 31417645].
  11. Eba A, Raza T, Rizvi S, Mahdi F. MicroRNAs and their role in the pathogenesis of cervical cancer. Middle East J Cancer. 2016;7(4):175-84.
  12. Lambert DW, Tasena H, Speight PM. MicroRNA: utility as biomarkers and therapeutic targets in squamous cell carcinoma. Squamous cell carcinoma. Dordrecht: Springer; 2017. P. 205-15. doi: 10.1007/978-94-024-1084-6_9.
  13. Slattery ML, Lee FY, Pellatt AJ, Mullany LE, Stevens JR, Samowitz WS, et al. Infrequently expressed miRNAs in colorectal cancer tissue and tumor molecular phenotype. Mod Pathol. 2017;30(8):1152-69. doi: 10.1038/modpathol.2017.38. [PubMed: 28548123].
  14. Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and microRNAs in cancer. Int J Mol Sci. 2018;19(2):459. doi: 10.3390/ijms19020459. [PubMed: 29401683].
  15. Pixberg C, Raba K, Müller F, Behrens B, Honisch E, Niederacher D, et al. Analysis of DNA methylation in single circulating tumor cells. Oncogene. 2017;36(23):3223-31. doi: 10.1038/onc.2016.480. [PubMed: 28068321].
  16. Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259(4):735-43. doi: 10.1097/SLA.0b013e3182a6909d. [PubMed: 23982750].
  17. Tellez CS, Juri DE, Do K, Bernauer AM, Thomas CL, Damiani LA, et al. EMT and stem cell–like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res. 2011;71(8):3087-97. doi: 10.1158/0008-5472.CAN-10-3035. [PubMed: 21363915].
  18. Ning X, Shi Z, Liu X, Zhang A, Han L, Jiang K, et al. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 2015;359(2):198-205. doi: 10.1016/j.canlet.2015.01.005. [PubMed: 25595591].
  19. Knudsen KN, Lindebjerg J, Nielsen BS, Hansen TF, Sørensen FB. MicroRNA-200b is downregulated in colon cancer budding cells. PloS One. 2017;12(5):e0178564. doi: 10.1371/journal.pone.0178564. [PubMed: 28552992].
  20. Li Y, Zeng C, Tu M, Jiang W, Dai Z, Hu Y, et al. MicroRNA-200b acts as a tumor suppressor in osteosarcoma via targeting ZEB1. Onco Targets Ther. 2016;9:3101-11. doi: 10.2147/OTT.S96561. [PubMed: 27307751].
  21. Liu C, Hu W, Li LL, Wang YX, Zhou Q, Zhang F, et al. Roles of miR-200 family members in lung cancer: more than tumor suppressors. Future Oncol. 2018;14(27):2875-86. doi: 10.2217/fon-2018-0155. [PubMed: 30208739].
  22. Wu WR, Sun H, Zhang R, Yu XH, Shi XD, Zhu MS, et al. Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1. Oncotarget. 2016;7(14):18684-93. doi: 10.18632/oncotarget.7629. [PubMed: 26919246].
  23. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154(2):311-24. doi: 10.1016/j.cell.2013.06.026. [PubMed: 23830207].
  24. Wang F, Ma Y, Wang H, Qin H. Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett. 2017;13(3):1048-57. doi: 10.3892/ol.2017.5593. [PubMed: 28454212].
  25. Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet. 2018;14(6):e1007362. doi: 10.1371/journal.pgen.1007362. [PubMed: 29879107].
  26. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277-300. doi: 10.3322/caac.20073. [PubMed: 20610543].
  27. Kaur S, Lotsari-Salomaa JE, Seppänen-Kaijansinkko R, Peltomäki P. MicroRNA methylation in colorectal cancer. Adv Exp Med Biol. 2016;937:109-22. doi: 10.1007/978-3-319-42059-2_6. [PubMed: 27573897].
  28. Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res. 2009;15(16):5060-72. doi: 10.1158/1078-0432.CCR-08-2245. [PubMed: 19671845].
  29. Bendoraite A, Knouf EC, Garg KS, Parkin RK, Kroh EM, O'Briant KC, et al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol. 2010;116(1):117-25. doi: 10.1016/j.ygyno.2009.08.009. [PubMed: 19854497].
  30. Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev. 2009;23(18):2152-65. doi: 10.1101/gad.1820109. [PubMed: 19759263].
  31. Choi PW, Ng SW. The functions of microRNA-200 family in ovarian cancer: beyond epithelial-mesenchymal transition. Int J Mol Sci. 2017;18(6):1207. doi: 10.3390/ijms18061207. [PubMed: 28587302].
  32. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F, et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene. 2012;31(16):2062-74. doi: 10.1038/onc.2011.383. [PubMed: 21874049].
  33. Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PloS One. 2010;5(1):e8697. doi: 10.1371/journal.pone.0008697. [PubMed: 20084174].
  34. Wiklund ED, Bramsen JB, Hulf T, Dyrskjøt L, Ramanathan R, Hansen TB, et al. Coordinated epigenetic repression of the miR‐200 family and miR‐205 in invasive bladder cancer. Int J Cancer. 2011;128(6):1327-34. doi: 10.1002/ijc.25461. [PubMed: 20473948].
  35. Vrba L, Garbe JC, Stampfer MR, Futscher BW. Epigenetic regulation of normal human mammary cell type–specific miRNAs. Genome Res. 2011;21(12):2026-37. doi: 10.1101/gr.123935.111. [PubMed: 21873453].
  36. Pang Y, Liu J, Li X, Xiao G, Wang H, Yang G, et al. MYC and DNMT 3A‐mediated DNA methylation represses micro RNA‐200b in triple negative breast cancer. J Cell Mol Med. 2018;22(12):6262-74. doi: 10.1111/jcmm.13916. [PubMed: 30324719].
  37. Škrha P, Hořínek A, Anděl M, Škrha J. miRNA-192, miRNA-21 and miRNA-200: new pancreatic cancer markers in diabetic patients? Vnitrni Lek. 2015;61(4):351-4. [PubMed: 25894267].
  38. Kurashige J, Mima K, Sawada G, Takahashi Y, Eguchi H, Sugimachi K, et al. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis. 2015;36(1):133-41. doi: 10.1093/carcin/bgu232. [PubMed: 25411357].
  39. Pendlebury A, Hannan NJ, Binder N, Beard S, Mcgauran M, Grant P, et al. The circulating microRNA‑200 family in whole blood are potential biomarkers for high‑grade serous epithelial ovarian cancer. Biomed Rep. 2017;6(3):319-22. doi: 10.3892/br.2017.847. [PubMed: 28451393].
  40. Maierthaler M, Benner A, Hoffmeister M, Surowy H, Jansen L, Knebel P, et al. Plasma miR‐122 and miR‐200 family are prognostic markers in colorectal cancer. Int J Cancer. 2017;140(1):176-87. doi: 10.1002/ijc.30433. [PubMed: 27632639].