Effects of Alpha-Lipoic Acid on TGF-β1 and Urotensin-II Levels in Glucocorticoid-Induced Osteonecrosis in Rats

IRCMJ logo


Alpha-Lipoic Acid

How to Cite

Koca I., DokuyucuR., Tas Z. A., Gokce H., & Ozcan O. (2020). Effects of Alpha-Lipoic Acid on TGF-β1 and Urotensin-II Levels in Glucocorticoid-Induced Osteonecrosis in Rats. Iranian Red Crescent Medical Journal, 22(4). Retrieved from https://ircmj.org/index.php/IRCMJ/article/view/388


Background: Osteonecrosis (ON) is a serious health problem, which dramatically reduces the quality of life.

Objectives: In the present study on the rat model of glucocorticoids (GCs) -induced ON, we explored the influence of alpha-lipoic acid on serum levels of TGF-β1 and urotensin-II (U-II) and on histological alteration with respect to fatty degeneration and osteocyte necrosis.

Methods: A total of 32 male Wistar albino rats were equally assigned to four groups, including control, methylprednisolone acetate (MPA), alpha-lipoic acid (ALA), and MPA with ALA (MP1 + ALA). The animals in MPA group subcutaneously received 15 mg/kg/week during 2 weeks, whereas 100 mg/kg/day ALA was intraperitoneally administered to ALA group during 4 weeks. The MPA + ALA group had both treatments with the same doses. ON was confirmed and graded histologically. Lipid peroxidation and DNA damage levels were immunohistochemically assessed in rats’ bones.

Results: After histopathological examinations, ALA injection attenuated oxidative stress levels through reducing both 8-OHdG-and 4-HNE-positive cells in the femoral head region (P < 0.05). The U-II and TGF-β1 protein levels significantly decreased after ALA treatment in MPA injected animals (P < 0.05, P < 0.01, respectively). Moreover, there was a strong correlation between U-II and TGF-β1 protein levels (P = 0.019, r = 0.884).

Conclusions: This study is novel with regard to showing the therapeutic effects of ALA on GC-induced ON in rats as well as the strong correlation between the expression levels of U-II and TGF-β1 proteins. In this regard, ALA may be a therapeutic agent in the treatment of ON patients.



  1. Kucharz EJ. Chronic inflammation-enhanced atherosclerosis: Can we consider it as a new clinical syndrome? Med Hypotheses. 2012;78(3):396-7. doi: 10.1016/j.mehy.2011.11.020. [PubMed: 22182962].
  2. Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC, et al. Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A. 2003;100(20):11201-6. doi: 10.1073/pnas.1932554100. [PubMed: 14500910]. [PubMed Central: PMC208734].
  3. Nusair MB, Rajpurohit N, Alpert MA. Chronic inflammation and coronary atherosclerosis in patients with end-stage renal disease. Cardiorenal Med. 2012;2(2):117-24. doi: 10.1159/000337082. [PubMed: 22851960]. [PubMed Central: PMC3376340].
  4. Newton R. Molecular mechanisms of glucocorticoid action: What is important? Thorax. 2000;55(7):603-13. doi: 10.1136/thorax.55.7.603. [PubMed: 10856322]. [PubMed Central: PMC1745805].
  5. Sholter DE, Armstrong PW. Adverse effects of corticosteroids on the cardiovascular system. Can J Cardiol. 2000;16(4):505-11. [PubMed: 10787466].
  6. Warrington TP, Bostwick JM. Psychiatric adverse effects of corticosteroids. Mayo Clin Proc. 2006;81(10):1361-7. doi: 10.4065/81.10.1361. [PubMed: 17036562].
  7. Mitra R. Adverse effects of corticosteroids on bone metabolism: A review. PM R. 2011;3(5):466-71. quiz 471. doi: 10.1016/j.pmrj.2011.02.017. [PubMed: 21570035].
  8. Satyanarayanasetty D, Pawar K, Nadig P, Haran A. Multiple adverse effects of systemic corticosteroids: A case report. J Clin Diagn Res. 2015;9(5):FD01-2. doi: 10.7860/JCDR/2015/12110.5939. [PubMed: 26155491]. [PubMed Central: PMC4484083].
  9. Seguro LP, Rosario C, Shoenfeld Y. Long-term complications of past glucocorticoid use. Autoimmun Rev. 2013;12(5):629-32. doi: 10.1016/j.autrev.2012.12.002. [PubMed: 23261815].
  10. Gebhard KL, Maibach HI. Relationship between systemic corticosteroids and osteonecrosis. Am J Clin Dermatol. 2001;2(6):377-88. doi: 10.2165/00128071-200102060-00004. [PubMed: 11770392].
  11. Powell C, Chang C, Naguwa SM, Cheema G, Gershwin ME. Steroid induced osteonecrosis: An analysis of steroid dosing risk. Autoimmun Rev. 2010;9(11):721-43. doi: 10.1016/j.autrev.2010.06.007. [PubMed: 20621176].
  12. Brooker BJ, Keith PPA. Osteonecrosis: The perils of steroids. A review of the literature and case report. Case Rep Clin Med. 2012;1(2):26-37. doi: 10.4236/crcm.2012.12008.
  13. Weinstein RS. Glucocorticoid-induced osteonecrosis. Endocrine. 2012;41(2):183-90. doi: 10.1007/s12020-011-9580-0. [PubMed: 22169965]. [PubMed Central: PMC3712793].
  14. Coulouarn Y, Lihrmann I, Jegou S, Anouar Y, Tostivint H, Beauvillain JC, et al. Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc Natl Acad Sci U S A. 1998;95(26):15803-8. doi: 10.1073/pnas.95.26.15803. [PubMed: 9861051]. [PubMed Central: PMC28125].
  15. Tian L, Li C, Qi J, Fu P, Yu X, Li X, et al. Diabetes-induced upregulation of urotensin II and its receptor plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction. Am J Physiol Endocrinol Metab. 2008;295(5):E1234-42. doi: 10.1152/ajpendo.90672.2008. [PubMed: 18796544].
  16. Dai HY, He T, Li XL, Xu WL, Ge ZM. Urotensin-2 promotes collagen synthesis via ERK1/2-dependent and ERK1/2-independent TGF-beta1 in neonatal cardiac fibroblasts. Cell Biol Int. 2011;35(2):93-8. doi: 10.1042/CBI20090104. [PubMed: 20946103].
  17. Gruson D, Rousseau MF, Ahn SA, van Linden F, Ketelslegers JM. Circulating urotensin II levels in moderate to severe congestive heart failure: Its relations with myocardial function and well established neurohormonal markers. Peptides. 2006;27(6):1527-31. doi: 10.1016/j.peptides.2005.11.019. [PubMed: 16364499].
  18. Matsushita M, Shichiri M, Imai T, Iwashina M, Tanaka H, Takasu N, et al. Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertens. 2001;19(12):2185-90. doi: 10.1097/00004872-200112000-00011. [PubMed: 11725162].
  19. Totsune K, Takahashi K, Arihara Z, Sone M, Ito S, Murakami O. Increased plasma urotensin II levels in patients with diabetes mellitus. Clin Sci (Lond). 2003;104(1):1-5. doi: 10.1042/cs1040001. [PubMed: 12519081].
  20. Totsune K, Takahashi K, Arihara Z, Sone M, Satoh F, Ito S, et al. Role of urotensin II in patients on dialysis. Lancet. 2001;358(9284):810-1. doi: 10.1016/S0140-6736(01)06002-0. [PubMed: 11564491].
  21. Suguro T, Watanabe T, Ban Y, Kodate S, Misaki A, Hirano T, et al. Increased human urotensin II levels are correlated with carotid atherosclerosis in essential hypertension. Am J Hypertens. 2007;20(2):211-7. doi: 10.1016/j.amjhyper.2006.08.001. [PubMed: 17261470].
  22. Onat AM, Turkbeyler IH, Pehlivan Y, Demir T, Kaplan DS, Taysi S, et al. The efficiency of a urotensin II antagonist in an experimental lung fibrosis model. Inflammation. 2012;35(3):1138-43. doi: 10.1007/s10753-011-9421-6. [PubMed: 22205238].
  23. Liu DG, Wang J, Zhang ZT, Wang Y. The urotension II antagonist SB-710411 arrests fibrosis in CCL4 cirrhotic rats. Mol Med Rep. 2009;2(6):953-61. doi: 10.3892/mmr_00000198. [PubMed: 21475927].
  24. Zhao J, Ding W, Song N, Dong X, Di B, Peng F, et al. Urotensin II-induced collagen synthesis in cultured smooth muscle cells from rat aortic media and a possible involvement of transforming growth factor-beta1/Smad2/3 signaling pathway. Regul Pept. 2013;182:53-8. doi: 10.1016/j.regpep.2012.12.006. [PubMed: 23403244].
  25. Gogebakan B, Uruc V, Ozden R, Duman IG, Yagiz AE, Okuyan HM, et al. Urotensin II (U-II), a novel cyclic peptide, possibly associated with the pathophysiology of osteoarthritis. Peptides. 2014;54:159-61. doi: 10.1016/j.peptides.2014.01.010. [PubMed: 24468547].
  26. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816-27. doi: 10.1096/fj.03-1273rev. [PubMed: 15117886].
  27. Lim H, Zhu YZ. Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci. 2006;63(22):2584-96. doi: 10.1007/s00018-006-6085-8. [PubMed: 17013566].
  28. Wehrhan F, Hyckel P, Guentsch A, Nkenke E, Stockmann P, Schlegel KA, et al. Bisphosphonate-associated osteonecrosis of the jaw is linked to suppressed TGFbeta1-signaling and increased galectin-3 expression: A histological study on biopsies. J Transl Med. 2011;9:102. doi: 10.1186/1479-5876-9-102. [PubMed: 21726429]. [PubMed Central: PMC3144016].
  29. Remst DF, Blaney Davidson EN, Vitters EL, Blom AB, Stoop R, Snabel JM, et al. Osteoarthritis-related fibrosis is associated with both elevated pyridinoline cross-link formation and lysyl hydroxylase 2b expression. Osteoarthritis Cartilage. 2013;21(1):157-64. doi: 10.1016/j.joca.2012.10.002. [PubMed: 23069856].
  30. Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 2003;48(12):3442-51. doi: 10.1002/art.11328. [PubMed: 14673995].
  31. Blaney Davidson EN, Vitters EL, van den Berg WB, van der Kraan PM. TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7. Arthritis Res Ther. 2006;8(3):R65. doi: 10.1186/ar1931. [PubMed: 16584530]. [PubMed Central: PMC1526625].
  32. Goraca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep. 2011;63(4):849-58. doi: 10.1016/s1734-1140(11)70600-4. [PubMed: 22001972].
  33. Dokuyucu R, Karateke A, Gokce H, Kurt RK, Ozcan O, Ozturk S, et al. Antioxidant effect of erdosteine and lipoic acid in ovarian ischemia-reperfusion injury. Eur J Obstet Gynecol Reprod Biol. 2014;183:23-7. doi: 10.1016/j.ejogrb.2014.10.018. [PubMed: 25461347].
  34. Dudek M, Knutelska J, Bednarski M, Nowinski L, Zygmunt M, Bilska-Wilkosz A, et al. Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts. Pharmacol Rep. 2014;66(3):499-504. doi: 10.1016/j.pharep.2013.11.001. [PubMed: 24905530].
  35. Castro MC, Francini F, Gagliardino JJ, Massa ML. Lipoic acid prevents fructose-induced changes in liver carbohydrate metabolism: Role of oxidative stress. Biochim Biophys Acta. 2014;1840(3):1145-51. doi: 10.1016/j.bbagen.2013.12.005. [PubMed: 24361606].
  36. Yang Y, Li W, Liu Y, Li Y, Gao L, Zhao JJ. Alpha-lipoic acid attenuates insulin resistance and improves glucose metabolism in high fat diet-fed mice. Acta Pharmacol Sin. 2014;35(10):1285-92. doi: 10.1038/aps.2014.64. [PubMed: 25152027]. [PubMed Central: PMC4186984].
  37. Zou J, Gan X, Zhou H, Chen X, Guo Y, Chen J, et al. Alpha-lipoic acid attenuates cardiac hypertrophy via inhibition of C/EBPbeta activation. Mol Cell Endocrinol. 2015;399:321-9. doi: 10.1016/j.mce.2014.10.003. [PubMed: 25450863].
  38. Li G, Gao L, Jia J, Gong X, Zang B, Chen W. alpha-Lipoic acid prolongs survival and attenuates acute kidney injury in a rat model of sepsis. Clin Exp Pharmacol Physiol. 2014;41(7):459-68. doi: 10.1111/1440-1681.12244. [PubMed: 24738479].
  39. Nozaki Y, Kumagai K, Miyata N, Niwa M. Pravastatin reduces steroid-induced osteonecrosis of the femoral head in SHRSP rats. Acta Orthop. 2012;83(1):87-92. doi: 10.3109/17453674.2011.641103. [PubMed: 22313369]. [PubMed Central: PMC3278663].
  40. Nixon JE. Early diagnosis and treatment of steroid induced avascular necrosis of bone. Br Med J (Clin Res Ed). 1984;288(6419):741-4. doi: 10.1136/bmj.288.6419.741. [PubMed: 6423059]. [PubMed Central: PMC1444664].
  41. Yamamoto T, Irisa T, Sugioka Y, Sueishi K. Effects of pulse methylprednisolone on bone and marrow tissues: Corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum. 1997;40(11):2055-64. doi: 10.1002/art.1780401119. [PubMed: 9365096].
  42. Drescher W, Schneider T, Becker C, Hobolth J, Ruther W, Hansen ES, et al. Selective reduction of bone blood flow by short-term treatment with high-dose methylprednisolone. An experimental study in pigs. J Bone Joint Surg Br. 2001;83(2):274-7. doi: 10.1302/0301-620x.83b2.10323. [PubMed: 11284580].
  43. Miyanishi K, Yamamoto T, Irisa T, Yamashita A, Jingushi S, Noguchi Y, et al. A high low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio as a potential risk factor for corticosteroid-induced osteonecrosis in rabbits. Rheumatology (Oxford). 2001;40(2):196-201. doi: 10.1093/rheumatology/40.2.196. [PubMed: 11257157].
  44. Pandit HB, Spillert CR. Effect of methylprednisolone on coagulation. J Natl Med Assoc. 1999;91(8):453-6. [PubMed: 12656434]. [PubMed Central: PMC2608443].
  45. Guan XY, Han D. Role of hypercoagulability in steroid-induced femoral head necrosis in rabbits. J Orthop Sci. 2010;15(3):365-70. doi: 10.1007/s00776-010-1452-6. [PubMed: 20559805].
  46. van Zaane B, Nur E, Squizzato A, Gerdes VE, Buller HR, Dekkers OM, et al. Systematic review on the effect of glucocorticoid use on procoagulant, anti-coagulant and fibrinolytic factors. J Thromb Haemost. 2010;8(11):2483-93. doi: 10.1111/j.1538-7836.2010.04034.x. [PubMed: 20735729].
  47. Motomura G, Yamamoto T, Miyanishi K, Jingushi S, Iwamoto Y. Combined effects of an anticoagulant and a lipid-lowering agent on the prevention of steroid-induced osteonecrosis in rabbits. Arthritis Rheum. 2004;50(10):3387-91. doi: 10.1002/art.20517. [PubMed: 15476219].
  48. Kang P, Gao H, Pei F, Shen B, Yang J, Zhou Z. Effects of an anticoagulant and a lipid-lowering agent on the prevention of steroid-induced osteonecrosis in rabbits. Int J Exp Pathol. 2010;91(3):235-43. doi: 10.1111/j.1365-2613.2010.00705.x. [PubMed: 20353425]. [PubMed Central: PMC2884091].
  49. Jiang Y, Zhang Y, Zhang H, Zhu B, Li P, Lu C, et al. Pravastatin prevents steroid-induced osteonecrosis in rats by suppressing PPARgamma expression and activating Wnt signaling pathway. Exp Biol Med (Maywood). 2014;239(3):347-55. doi: 10.1177/1535370213519215. [PubMed: 24510055].
  50. Ichiseki T, Kaneuji A, Katsuda S, Ueda Y, Sugimori T, Matsumoto T. DNA oxidation injury in bone early after steroid administration is involved in the pathogenesis of steroid-induced osteonecrosis. Rheumatology (Oxford). 2005;44(4):456-60. doi: 10.1093/rheumatology/keh518. [PubMed: 15598705].
  51. Feng YL, Tang XL. Effect of glucocorticoid-induced oxidative stress on the expression of Cbfa1. Chem Biol Interact. 2014;207:26-31. doi: 10.1016/j.cbi.2013.11.004. [PubMed: 24239970].
  52. Weinstein RS. Glucocorticoids, osteocytes, and skeletal fragility: The role of bone vascularity. Bone. 2010;46(3):564-70. doi: 10.1016/j.bone.2009.06.030. [PubMed: 19591965]. [PubMed Central: PMC2823999].
  53. Song Q, Shi Z, Bi W, Liu R, Zhang C, Wang K, et al. Beneficial effect of grape seed proanthocyanidin extract in rabbits with steroid-induced osteonecrosis via protecting against oxidative stress and apoptosis. J Orthop Sci. 2015;20(1):196-204. doi: 10.1007/s00776-014-0654-8. [PubMed: 25287583].
  54. Lu BB, Li KH. Lipoic acid prevents steroid-induced osteonecrosis in rabbits. Rheumatol Int. 2012;32(6):1679-83. doi: 10.1007/s00296-011-1846-6. [PubMed: 21431293].
  55. Fang J, Xu L, Li Y, Zhao Z. Roles of TGF-beta 1 signaling in the development of osteoarthritis. Histol Histopathol. 2016;31(11):1161-7. doi: 10.14670/HH-11-779. [PubMed: 27164863].
  56. Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782(4):197-228. doi: 10.1016/j.bbadis.2008.01.006. [PubMed: 18313409].
  57. Remst DF, Blaney Davidson EN, van der Kraan PM. Unravelling osteoarthritis-related synovial fibrosis: A step closer to solving joint stiffness. Rheumatology (Oxford). 2015;54(11):1954-63. doi: 10.1093/rheumatology/kev228. [PubMed: 26175472].
  58. Xie L, Tintani F, Wang X, Li F, Zhen G, Qiu T, et al. Systemic neutralization of TGF-beta attenuates osteoarthritis. Ann N Y Acad Sci. 2016;1376(1):53-64. doi: 10.1111/nyas.13000. [PubMed: 26837060]. [PubMed Central: PMC4970979].