Effect of mir-129 on the Sensitivity Enhancement of Methotrexate and Migration Inhibition in Osteosarcoma Cancer Cells

IRCMJ logo

Keywords

Apoptosis
Chemoresistance
Invasion
miR-129
Osteosarcoma

How to Cite

WuJ., ZhangC., ZhengL., & ChenL. (2021). Effect of mir-129 on the Sensitivity Enhancement of Methotrexate and Migration Inhibition in Osteosarcoma Cancer Cells . Iranian Red Crescent Medical Journal, 23(2). https://doi.org/10.32592/ircmj.2021.23.2.363

Abstract

Background: MicroRNAs have been recently declared to be contributed to the various aspects of osteosarcoma cells, including growth and survival, apoptosis, invasion, and chemoresistance.

Objectives: The present study aimed to investigate the potentiating effects of miR-129 on the chemosensitivity of Saose-2 osteosarcoma cells to methotrexate (MTX) and underlying mechanisms.

Methods: Saose-2 cells were transfected with miR-129 mimics using Lipofectamine. The cytotoxic effects of miR-129 and MTX on Saose-2 cells were measured using MTT assay. Scratch wound healing assay was used to evaluate cell migration. The apoptosis rate of cancer cells was also measured using ELISA Cell Death Assay and flow cytometry. The mRNA expression levels of target genes were measured using quantitative RT-PCR.

Results: miR-129 mimic transfection significantly increased the expression levels of this miRNA in Saose-2 cells (P<0.05). The combination of MTX with miR-129 transfection led to enhanced cytotoxic effects of MTX in lower concentrations. In addition, miR-129 significantly increased MTX-induced apoptosis levels and decreased invasion behavior in Saose-2 cells. The mRNA expression levels of c-Myc, K-Ras, CXCR4, MMP9, and ADAMTS, as main genes involved in chemoresistance and invasion, were downregulated in miR-129 transfected cells.

Conclusion: The obtained results revealed the importance of miR-129 in the sensitivity of osteosarcoma cells to MTX and its underlying mechanisms. Therefore, miR-129 might be an appropriate candidate for reversing MTX resistance in osteosarcoma cells.

 

https://doi.org/10.32592/ircmj.2021.23.2.363

References

  1. Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, et al. miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther. 2018;26(5):1299-312. doi: 10.1016/j.ymthe.2018.03.009. [PubMed: 29628305].
  2. Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T, Zhang L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther. 2019;27(3):518-30. doi: 10.1016/j.ymthe.2019.01.001. [PubMed: 30692017].
  3. Bazavar M, Fazli J, Valizadeh A, Ma B, Mohammadi E, Asemi Z, et al. miR-192 enhances sensitivity of methotrexate drug to MG-63 osteosarcoma cancer cells. Pathol Res Pract. 2020;216(11):153176. doi: 10.1016/j.prp.2020.153176. [PubMed: 32861171].
  4. Gelberg KH, Fitzgerald EF, Hwang S, Dubrow R. Growth and development and other risk factors for osteosarcoma in children and young adults. Int J Epidemiol. 1997;26(2):272-8. doi: 10.1093/ije/26.2.272. [PubMed: 9169161].
  5. Xie X, Li YS, Xiao WF, Deng ZH, He HB, Liu Q, et al. MicroRNA-379 inhibits the proliferation, migration and invasion of human osteosarcoma cells by targetting EIF4G2. Biosci Rep. 2017;37(3):BSR20160542. doi: 10.1042/BSR20160542. [PubMed: 28381518].
  6. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9(4):422-41. doi: 10.1634/theoncologist.9-4-422. [PubMed: 15266096].
  7. Fanelli M, Maria Hattinger C, Vella S, Tavanti E, Michelacci F, Gudeman B, et al. Targeting ABCB1 and ABCC1 with their specific inhibitor CBT-1® can overcome drug resistance in osteosarcoma. Curr Cancer Drug Targets. 2016;16(3):261-74. doi: 10.2174/1568009616666151106120434. [PubMed: 26548759].
  8. Duan Z, Gao Y, Shen J, Choy E, Cote G, Harmon D, et al. miR‐15b modulates multidrug resistance in human osteosarcoma in vitro and in vivo. Mol Oncol. 2017;11(2):151-66. doi: 10.1002/1878-0261.12015. [PubMed: 28145098].
  9. Chen R, Wang G, Zheng Y, Hua Y, Cai Z. Drug resistance‐related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies. J Cell Mol Med. 2019;23(4):2280-92. doi: 10.1111/jcmm.14064. [PubMed: 30724027].
  10. Chen D, Liu D, Chen Z. Potential therapeutic implications of miRNAs in osteosarcoma chemotherapy. Tumor Biol. 2017;39(9):1010428317705762. doi: 10.1177/1010428317705762. [PubMed: 28933259].
  11. Wang JY, Yang Y, Ma Y, Wang F, Xue A, Zhu J, et al. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother. 2020;121:109627. doi: 10.1016/j.biopha.2019.109627. [PubMed: 31810120].
  12. Liang W, Gao B, Fu P, Xu S, Qian Y, Fu Q. The miRNAs in the pathgenesis of osteosarcoma. Front Biosci (Landmark Ed). 2013;18:788-94. doi: 10.2741/4142. [PubMed: 23276964].
  13. Salehi M, Sharifi M. Exosomal miRNAs as novel cancer biomarkers: challenges and opportunities. J Cell Physiol. 2018;233(9):6370-80. doi: 10.1002/jcp.26481. [PubMed: 29323722].
  14. Ma Z, Cai H, Zhang Y, Chang L, Cui Y. MiR-129-5p inhibits non-small cell lung cancer cell stemness and chemoresistance through targeting DLK1. Biochem Biophys Res Commun. 2017;490(2):309-16. doi: 10.1016/j.bbrc.2017.06.041. [PubMed: 28619508].
  15. Liu K, Huang J, Ni J, Song D, Ding M, Wang J, et al. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142–3p and miR-129–5p. Cell Cycle. 2017;16(6):578-87. doi: 10.1080/15384101.2017.1288324. [PubMed: 28346809].
  16. Zhang RM, Tang T, Yu HM, Yao XD. LncRNA DLX6-AS1/miR-129-5p/DLK1 axis aggravates stemness of osteosarcoma through Wnt signaling. Biochem Biophys Res Commun. 2018;507(1-4):260-6. doi: 10.1016/j.bbrc.2018.11.019. [PubMed: 30442366].
  17. Han C, Wang W. MicroRNA-129-5p suppresses cell proliferation, migration and invasion via targeting ROCK1 in osteosarcoma. Mol Med Rep. 2018;17(3):4777-84. doi: 10.3892/mmr.2018.8374. [PubMed: 29328417].
  18. Long XH, Zhou YF, Peng AF, Zhang ZH, Chen XY, Chen WZ, et al. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP). Tumor Biol. 2015;36(5):3799-806. doi: 10.1007/s13277-014-3021-7. [PubMed: 25566966].
  19. Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4(1):25-43. doi: 10.1007/s40744-016-0050-2. [PubMed: 27933467].
  20. Misaghi A, Goldin A, Awad M, Kulidjian AA. Osteosarcoma: a comprehensive review. Sicot J. 2018;4:12. doi: 10.1051/sicotj/2017028. [PubMed: 29629690].
  21. Bach DH, Hong JY, Park HJ, Lee SK. The role of exosomes and miRNAs in drug‐resistance of cancer cells. Int J Cancer. 2017;141(2):220-30. doi: 10.1002/ijc.30669. [PubMed: 28240776].
  22. Cao J, Wang Q, Wu G, Li S, Wang Q. miR-129-5p inhibits gemcitabine resistance and promotes cell apoptosis of bladder cancer cells by targeting Wnt5a. Int Urol Nephrol. 2018;50(10):1811-9. doi: 10.1007/s11255-018-1959-x. [PubMed: 30117016].
  23. Wang J, Ye C, Liu J, Hu Y. UCA1 confers paclitaxel resistance to ovarian cancer through miR-129/ABCB1 axis. Biochem Biophys Res Commun. 2018;501(4):1034-40. doi: 10.1016/j.bbrc.2018.05.104. [PubMed: 29777711].
  24. Luan Q, Zhang B, Li X, Guo M. MiR-129-5p is downregulated in breast cancer cells partly due to promoter H3K27m3 modification and regulates epithelial-mesenchymal transition and multi-drug resistance. Eur Rev Med Pharmacol Sci. 2016;20(20):4257-65. [PubMed: 27831649].
  25. Yao N, Fu Y, Chen L, Liu Z, He J, Zhu Y, et al. Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/miR-129-5p/Twist1 axis. Oncogene. 2019;38(47):7216-33. doi: 10.1038/s41388-019-0904-5. [PubMed: 31444414].
  26. Zhang Y, Wang Y, Wei Y, Li M, Yu S, Ye M, et al. MiR-129-3p promotes docetaxel resistance of breast cancer cells via CP110 inhibition. Sci Rep. 2015;5:15424. doi: 10.1038/srep15424. [PubMed: 26487539].
  27. Ghanbarian M, Afgar A, Yadegarazari R, Najafi R, Teimoori-Toolabi L. Through oxaliplatin resistance induction in colorectal cancer cells, increasing ABCB1 level accompanies decreasing level of miR-302c-5p, miR-3664-5p and miR-129-5p. Biomed Pharmacother. 2018;108:1070-80. doi: 10.1016/j.biopha.2018.09.112. [PubMed: 30372807].
  28. Zeng H, Wang L, Wang J, Chen T, Li H, Zhang K, et al. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch Biochem Biophys. 2018;651:52-60. doi: 10.1016/j.abb.2018.05.018. [PubMed: 29802821].
  29. Cao H, Xiao C, Lu H, Yu H, Hong H, Guo C, et al. MiR-129 reduces CDDP resistance in gastric cancer cells by inhibiting MAPK3. Eur Rev Med Pharmacol Sci. 2019;23(15):6478-85. doi: 10.26355/eurrev_201908_18531. [PubMed: 31378887].
  30. Lou L, Tian M, Chang J, Li F, Zhang G. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7. Biomed Pharmacother. 2020;122:109692. doi: 10.1016/j.biopha.2019.109692. [PubMed: 31918268].
  31. Han G, Wang Y, Bi W. c-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK‐ERK pathway. Oncol Res. 2012;20(4):149-56. doi: 10.3727/096504012x13522227232237. [PubMed: 23461061].
  32. Alper M, Kockar F. IL-6 upregulates a disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2) in human osteosarcoma cells mediated by JNK pathway. Mol Cell Biochem. 2014;393(1-2):165-75. doi: 10.1007/s11010-014-2056-9. [PubMed: 24752352].
  33. Zhang H, He QY, Wang GC, Tong DK, Wang RK, Ding WB, et al. miR-422a inhibits osteosarcoma proliferation by targeting BCL2L2 and KRAS. Biosci Rep. 2018;38(2):BSR20170339. doi: 10.1042/BSR20170339. [PubMed: 29358307].
  34. Amankwatia E, Chakravarty P, Carey F, Weidlich S, Steele R, Munro A, et al. MicroRNA-224 is associated with colorectal cancer progression and response to 5-fluorouracil-based chemotherapy by KRAS-dependent and-independent mechanisms. Br J Cancer. 2015;112(9):1480-90. doi: 10.1038/bjc.2015.125. [PubMed: 25919696].
  35. Asuthkar S, Velpula KK, Chetty C, Gorantla B, Rao JS. Epigenetic regulation of miRNA-211 by MMP-9 governs glioma cell apoptosis, chemosensitivity and radiosensitivity. Oncotarget. 2012;3(11):1439-54. doi: 10.18632/oncotarget.683. [PubMed: 23183822].