Atrial electromechanical delay of patients with COPD in acute and stable periods

IRCMJ logo
PDF
HTML

Keywords

Atrial electromechanical delay
Chronic obstructive pulmonary disease
Echocardiography

How to Cite

PerincekG., AvciS., & KahramanF. (2021). Atrial electromechanical delay of patients with COPD in acute and stable periods. Iranian Red Crescent Medical Journal, 23(2). https://doi.org/10.32592/ircmj.2021.23.2.157

Abstract

Background: The increased level of the airway and systemic inflammation, worsened clinical symptoms, and impaired lung functions are regarded as the characteristics of chronic obstructive pulmonary disease (COPD). The COPD may cause right/left ventricle dysfunction, pulmonary hypertension, and cor pulmonale.

Objectives: The current study aimed to assess atrial electromechanical delay (AEMD) and echocardiographic changes and their relationship with inflammatory markers in subjects suffering from COPD during acute and stable periods.

Methods: This prospective study was carried out on a total of 45 patients (including 22 and 23 female and male participants, respectively) suffering from COPD exacerbation. The stable phase of the participants was considered the control group. The first and second echocardiography was conducted in the first 24 h and following 3 months, respectively. Conventional and Tissue Doppler Imaging was utilized for the evaluation of atrial conduction times and systolic-diastolic functions of the right-left heart. The inflammatory markers, including the c-reactive protein-to-albumin ratio (CAR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio, were also measured in this study.

Results: In the stable period, there was a significant reduction in lateral/tricuspid, lateral/mitral, and septal AEMD. The evaluation of right ventricle basal, mid and vertical diameters, tricuspid annular plane systolic excursion, Amax tricuspid, tricuspid regurgitant velocity, systolic pulmonary arterial pressure, tricuspid annular systolic motion, left atrium diameter, left ventricle end-diastolic diameter, interventricular septum thickness, mitral early diastole/atrium systole ratio, systolic mitral motion, systolic septal motion, and heart rate showed significant differences after 3 months. In addition, there was a significant decrease in C-reactive protein, CAR, and NLR.

Conclusion: In the stable period, a significant reduction was observed in AEMDs and there was an improvement in the systolic functions of the right-left heart. No correlation was observed between AEMDs and inflammatory markers.

 

https://doi.org/10.32592/ircmj.2021.23.2.157
PDF
HTML

References

  1. Rawy AM, Fathalla D. Left ventricular diastolic dysfunction in patients with chronic obstructive pulmonary disease (COPD), prevalence and association with disease severity: using tissue Doppler study. Egypt J Chest Dis Tuberc. 2015;64(4):785-92. doi: 10.1016/j.ejcdt.2015.06.010.
  2. Yao CY, Liu XL, Tang Z. Prognostic role of neutrophil–lymphocyte ratio and platelet–lymphocyte ratio for hospital mortality in patients with AECOPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2285-90. doi: 10.2147/COPD.S141760. [PubMed: 28814856].
  3. Ozben B, Eryuksel E, Tanrıkulu AM, Papila N, Ozyigit T, Celikel T, et al. Acute Exacerbation Impairs Right Ventricular Function in COPD Patients. Hellenic J Cardiol. 2015;56(4):324-31. [PubMed: 26233773].
  4. Patel AR, Hurst JR. Extrapulmonary comorbidities in chronic obstructive pulmonary disease: state of the art. Expert Rev Respir Med. 2011;5(5):647-62. doi: 10.1586/ers.11.62. [PubMed: 21955235].
  5. Ferixa X, Portillo K, Pare C, Garcia-Aymerich J, Gomez FP, Benet M, et al. Echocardiographic abnormalities in patients with COPD at their first hospital admission. Eur Respir J. 2013;41(4):784-9. doi: 10.1183/09031936.00222511. [PubMed: 23018914].
  6. Gupta NK, Agrawal RK, Srivastav AB, Ved ML. Echocardiographic evaluation of heart in chronic obstructive pulmonary disease patient and its co-relation with the severity of disease. Lung India. 2011;28(2):105-9. doi: 10.4103/0970-2113.80321. [PubMed: 21712919].
  7. Goudis CA. Chronic obstructive pulmonary disease and atrial fibrillation: an unknown relationship. J Cardiol. 2017;69(5):699-705. doi: 10.1016/j.jjcc.2016.12.013. [PubMed: 28188041].
  8. Markides V, Schilling RJ. Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment. Heart. 2003;89(8):939-43. doi: 10.1136/heart.89.8.939. [PubMed: 12860883].
  9. Ari H, Ari S, Akkaya M, Aydın C, Emlek N, Sarıgul OY, et al. Predictive value of atrial electromechanical delay for atrial fibrillation recurrence. Cardiol J. 2013;20(6):639-47. doi: 10.5603/CJ.2013.0164. [PubMed: 24338542].
  10. Caglar IM, Dasli T, Caglar FN, Teber MK, Ugurlucan M, Ozmen G. Evaluation of atrial conduction features with tissue Doppler imaging in patients with chronic obstructive pulmonary disease. Clin Res Cardiol. 2012;101(8):599-606. doi: 10.1007/s00392-012-0431-7. [PubMed: 22391986].
  11. El-Gazzar AG, Kamel MH, Elbahnasy OKM, El-Naggar ME. Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients. Expert Rev Respir Med.2020;14(1):111-6. doi: 10.1080/17476348.2019.1675517. [PubMed: 315779119].
  12. Akkececi NS, Cetin GY, Gogebakan H, Acipayam C. The C-reactive protein/albumin ratio and complete blood count parameters as indicators of disease activity in patients with Takayasu arteritis. Med Sci Monit. 2019;25:1401-9. doi: 10.12659/MSM.912495. [PubMed: 30792377].
  13. Günay E, Sarınç Ulaşlı S, Akar O, Ahsen A, Günay S, Koyuncu T, et al. Neutrophil-to-lymphocyte ratio in chronic obstructive pulmonary disease: a retrospective study. Inflammation.2014;37(2):374-80. doi: 10.1007/s10753-013-9749-1. [PubMed: 24078279].
  14. Burge S, Wedzicha JA. COPD exacerbations: definitions and classifications. Eur Respir J. 2003;41:46s-53s. doi: 10.1183/09031936.03.00078002. [PubMed: 12795331].
  15. COPD. ATS Official Documents. Available at: URL: https://www.thoracic.org/statements/copd.php; 2018.
  16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pelikka PA, et al. Recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr. 2005;18(12):1440-63. doi: 10.1016/j.echo.2005.10.005. [PubMed: 16376782].
  17. Atalay E, Erdogdu HI, Tur BK, Deniz Balyen LS, Karabag Y, Ardıc S. The relationship between C reactive protein /albumin ratio and 1-year mortality in hospitalized elderly COPD patients with acute exacerbation. Turk J Geriatr. 2019;22(1):9-17.
  18. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(Suppl 1):2-13. doi: 10.1136/hrt.2005.077875. [PubMed: 6543598].
  19. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115(1):176-88. doi: 10.1161/CIRCRESAHA.113.301129. [PubMed: 24951766].
  20. Foschi M, Di Mauro M, Tancredi F, Capparuccia C, Petroni R, Leonzio L, et al. The dark side of the moon: the right ventricle. J Cardiovasc Dev Dis. 2017;4(4):18. doi: 10.3390/jcdd4040018. [PubMed: 29367547].
  21. Xu Y, Yamashiro T, Moriya H, Tsubakimoto M, Tsuchiya N, Nagatani Y. Hyperinflated lungs compress the heart during expiration in COPD patients: a new finding on dynamic-ventilation computed tomography. Int J Chron Obstruct Pulmon Dis. 2017;12:3123-31. doi: 10.2147/COPD.S145599. [PubMed: 29123390].
  22. Meluzín J, Spinarová L, Bakala J, Toman J, Krejcí J, Hude P, et al. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J. 2001;22(4):340-8. doi: 10.1053/euhj.2000.2296. [PubMed: 11161953].
  23. Terzano C, Romani S, Gaudio C, Pelliccia F, Serao M, Vitarelli A. Right heart functional changes in the acute, hypercapnic exacerbations of COPD. Biomed Res Int. 2014;2014:596051. doi: 10.1155/2014/596051. [PubMed: 25050365].
  24. Bossone E, Rubenfire M, Bach DS, Ricciardi M, Armstrong WF. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol. 1999;33(6):1662-6. doi: 10.1016/s0735-1097(99)00055-8. [PubMed: 10334439].
  25. Badano LP, Muraru D, Enriquez-Sarano M. Assessment of functional tricuspid regurgitation. Eur Heart J. 2013;34(25):1875-84. doi: 10.1093/eurheartj/ehs474. [PubMed: 23303656].
  26. Falk JA, Kadiev S, Criner GJ, Scharf SM, Minai OA, Diaz P. Cardiac disease in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5(4):543-8. doi: 10.1513/pats.200708-142ET. [PubMed: 18453369].
  27. Yagmur J, Yetkin O, Cansel M, Acıkgoz N, Ermis N, Karakus Y, et al. Assessment of atrial electromechanical delay and influential factors in patients with obstructive sleep apnea. Sleep Breath. 2012;16(1):83-8. doi: 10.1007/s11325-010-0477-6. [PubMed: 21221821].
  28. Acar G, Kahraman H, Akkoyun M, Kilinc M, Zencir C, Yusufoglu E, et al. Evaluation of atrial electromechanical delay and its relationship to inflammation and oxidative stress in patients with chronic obstructive pulmonary disease. Echocardiography. 2014;31(5):579-85. doi: 10.1111/echo.12442. [PubMed: 24372655].